top of page

The Hidden Cost of Poor Airflow in High-Performance Commercial Buildings

Poor airflow in commercial buildings leads to higher energy bills, reduced indoor air quality, and HVAC wear. Learn how to identify and solv

Ava Montini

Mar 24, 2025

Written by 

Published on

Tags

Why airflow inefficiencies drive up costs, compromise indoor air quality, and create hidden challenges for facility managers


Most commercial and institutional buildings today are designed with performance and efficiency in mind. Energy benchmarks, ESG goals, and occupant well-being are often front and center. But despite those efforts, one critical element of building performance is consistently underdiagnosed: airflow.


Poor airflow can silently affect every corner of your building’s operations — from higher energy consumption and HVAC maintenance costs to reduced indoor air quality (IAQ) and missed sustainability opportunities. It rarely shows up as a red flag on day one, but over time, it chips away at performance in ways that are both measurable and avoidable.


Inefficient Airflow Increases Energy Use — Even in “Efficient” Buildings

In many commercial buildings, HVAC systems account for roughly 30–40% of total energy consumption, according to Natural Resources Canada and ASHRAE. But when airflow is restricted, that percentage can climb significantly.


The most common culprits are high-resistance filters, dirty or aging ductwork, unbalanced systems, or outdated fans. These conditions increase static pressure, which forces HVAC fans to work harder and longer to achieve required airflow levels.


According to a study by the U.S. National Institute of Standards and Technology (NIST), buildings with airflow-related HVAC issues can see energy use increase by up to 30% compared to optimized systems. [1]


Even minor issues can have an outsized impact. A 100,000 sq. ft. office building experiencing elevated fan energy use due to clogged filters or inefficient duct design could face annual utility costs tens of thousands of dollars higher than necessary. For building owners managing multiple sites, that inefficiency compounds quickly.


Airflow and Indoor Air Quality Are Closely Linked


Buildings are dynamic systems, and air quality tends to suffer when airflow is compromised. Insufficient airflow can lead to poor ventilation, uneven air distribution, and pockets of stagnation in rooms or zones. These areas often experience elevated levels of carbon dioxide (CO₂), volatile organic compounds (VOCs), and particulate matter — especially in high-occupancy spaces.


A 2015 study from Harvard’s T.H. Chan School of Public Health found that employees working in well-ventilated buildings performed 61% better on cognitive tasks than those in typical buildings with poor ventilation and air quality. [2]


In schools, researchers have found that students in classrooms with improved ventilation perform better on standardized tests. [3] In healthcare facilities, inadequate air movement can increase the risk of airborne illness transmission.


Common complaints like “stuffy rooms,” temperature inconsistencies, or fatigue can often be traced back to airflow and ventilation issues — even when temperature setpoints and filtration standards are technically being met.


Poor Airflow Wears Down HVAC Systems Faster


Inefficient airflow costs more on your energy bill and accelerates mechanical wear and tear. When fan motors, compressors, and dampers are forced to operate under continuous load, components degrade faster than expected.


This leads to:

  • More frequent repairs and service calls

  • Shortened equipment lifespan

  • Greater downtime and occupant discomfort during peak seasons


A study from the National Air Duct Cleaners Association (NADCA) notes that air distribution restrictions are a key factor in premature HVAC failure and reduced system capacity. [4]


The cost of replacing a rooftop unit, for example, can range from $10,000 to $25,000, depending on building size and complexity — not including indirect costs from temporary system downtime.


Sustainability Targets Can Be Quietly Undermined


Many facilities today are pursuing ESG goals, LEED certification, or local emissions reduction mandates. But airflow inefficiencies can quietly work against those targets by increasing Scope 2 emissions (energy-related emissions) and filter waste.


High-resistance air filters, mainly traditional pleated filters, can contribute to this in two ways:

  1. Increased energy use due to pressure drop

  2. Frequent changeouts, leading to more waste and landfill contribution


According to a 2021 study in Building and Environment, filter pressure drop is one of the most overlooked contributors to unnecessary HVAC energy use — especially when filters are overused or under-maintained. [5]


If a building claims progress in sustainability, it’s important to ensure that filtration and airflow practices align with those claims—both from an energy and waste standpoint.


Missed Opportunities for Incentives and Cost Recovery


One of the lesser-known downsides of inefficient airflow is the lost opportunity to qualify for energy retrofit incentives.


Many utility and government programs across North America offer rebates, grants, or low-interest financing for businesses upgrading HVAC systems, controls, and low-pressure filtration. But to be eligible, buildings often need to demonstrate quantifiable improvements in system performance.


For example, Ontario’s Save on Energy Retrofit Program offers up to 50% of project costs for energy-efficiency upgrades, including those related to ventilation, air handling units, and demand control ventilation systems. [6]


Without data on airflow improvement or energy reduction — or without addressing underlying airflow inefficiencies — buildings may fail to qualify, leaving funding on the table.


Practical Steps to Address Airflow Challenges


The good news is that improving airflow doesn’t require a major capital project. Many impactful changes can be made within existing operations and maintenance cycles.


Here’s where most facilities can start:

  • Conduct a static pressure and airflow assessment to identify bottlenecks

  • Replace high-pressure filters with low-pressure, high-efficiency alternatives

  • Balance and tune your HVAC system, especially if zones have changed due to new usage patterns

  • Install real-time IAQ monitors to detect issues as they emerge, not after complaints arise

  • Track filter changeouts and energy use to capture data for future incentive applications


These strategies are already being implemented in facilities across North America — and in most cases, they deliver measurable improvements in energy efficiency, equipment reliability, and occupant satisfaction.



Airflow may not be the most visible part of your building, but it’s one of the most influential. When ignored, it quietly drives up energy costs, reduces system lifespan, and compromises air quality.


For facility managers and business owners focused on performance, sustainability, and operational clarity, airflow should be on the radar — not just as a maintenance metric but as a lever for long-term efficiency and resilience.


Addressing airflow challenges is a straightforward, high-ROI step that supports healthier, more cost-effective, and future-ready buildings.

How Winter Affects Indoor Air Quality: Tips to Improve IAQ and Save Energy

  • Writer: Ava Montini
    Ava Montini
  • Nov 22, 2024
  • 5 min read

As snow blankets the ground and the warmth of home becomes a retreat from the frigid air outside, another less visible element takes center stage: indoor air quality (IAQ). Winter is a season of contrasts—while we cherish cozy nights and festive gatherings, the environmental trade-offs of sealed windows, cranked-up heaters, and reduced ventilation can quietly affect our health and comfort.


The air indoors becomes a silent participant in our daily lives, influencing everything from how well we breathe to how much energy we consume. Understanding how winter habits impact IAQ is essential to creating healthier, more sustainable spaces.


1. The Winter Environment and Indoor Air Quality Challenges

During the winter months, we naturally seal windows and doors to retain heat, but this significantly reduces fresh air exchange. According to the Environmental Protection Agency (EPA), indoor pollutant levels can be two to five times higher than outdoors, and winter often amplifies this imbalance.


Common Winter IAQ Issues:

  • Trapped Pollutants: Dust, pet dander, and volatile organic compounds (VOCs) from cleaning products and materials accumulate in sealed homes.

  • Dry Air: Heating systems lower indoor humidity levels, often below the recommended 30-50%, causing respiratory discomfort and allowing airborne viruses to spread more quickly.

  • Carbon Dioxide (CO2): Poor ventilation increases CO2 levels, leading to fatigue, poor concentration, and even health risks.


For example, cooking hearty meals—a winter staple—releases fine particles and nitrogen dioxide into the air, particularly if ventilation systems are inadequate. Add to this candles, which emit particulates, and cleaning sprays with VOCs, and you get a cocktail of pollutants that linger in the air during winter.


2. The Link Between Poor IAQ and Winter Sickness

It’s no coincidence that cold and flu season coincides with winter. Poor IAQ creates an environment where airborne viruses thrive. Research from the Harvard T.H. Chan School of Public Health shows that higher levels of particulates increase the risk of respiratory infections.


Consider schools during winter: crowded classrooms with inadequate ventilation often experience higher absenteeism due to illness. Similarly, in workplaces, the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) reports that poor IAQ reduces cognitive function by up to 15%.

Even at home, children and older adults are particularly vulnerable. However, addressing IAQ with solutions like air filtration and humidity control can reduce these risks, keeping households healthier through the season.


3. Heating Efficiency and Environmental Impact

Winter heating is essential for comfort and health, but it comes with both financial and environmental costs. According to the U.S. Department of Energy, heating accounts for nearly 42% of a household’s energy consumption during the colder months, making it the single largest energy expense. However, the impact of heating goes beyond energy bills—inefficient systems can strain resources, contribute to higher carbon emissions, and even affect indoor air quality (IAQ).


How HVAC Systems Influence IAQ and Efficiency

Heating, ventilation, and air conditioning (HVAC) systems are central to indoor comfort, but their efficiency depends on regular maintenance. Dirty or clogged air filters reduce airflow, forcing HVAC systems to work harder and use more energy. This inefficiency increases costs and leads to uneven heating, worsened air circulation, and reduced system lifespan.


Replacing filters is a simple yet effective solution. As noted by the U.S. Department of Energy, a clean filter can reduce energy consumption by 5-15% while also helping maintain better IAQ by trapping dust, allergens, and other pollutants.


Environmental Costs of Inefficient Heating Systems

Beyond individual households, inefficient heating systems have a broader environmental impact. Residential heating contributes significantly to greenhouse gas emissions, especially when fueled by natural gas, propane, or oil. Poorly maintained systems exacerbate this by burning more fuel to compensate for inefficiencies.


The materials used in air filters also contribute to environmental sustainability. Millions of disposable filters are sent to landfills annually, where they add to long-term waste. Many are made of non-recyclable synthetic materials, adding to the ecological burden. Opting for reusable or recyclable filter options helps reduce this waste while supporting a more sustainable heating system.


Practical Steps for Improving Heating Efficiency

To minimize environmental impact and reduce costs while maintaining good IAQ, consider these strategies:

  • Replace Filters Regularly: Dirty filters strain the system and reduce airflow, leading to inefficiencies.

  • Seal Ducts: Leaks in ductwork can cause up to 30% of heated air to be lost, forcing the HVAC system to work harder.

  • Upgrade Insulation: Properly insulating attics, walls, and floors helps retain heat and reduces the workload on heating systems.

  • Invest in Smart Thermostats: These devices allow precise temperature control, optimizing energy use during the day and night.

  • Schedule Routine Maintenance: Regular professional check-ups ensure that HVAC systems operate efficiently and identify potential issues early.


4. Sustainable Solutions for Winter IAQ

Improving indoor air quality (IAQ) during winter is a balancing act between maintaining health, reducing energy consumption, and minimizing environmental impact. The good news is that modern technologies and sustainable practices make achieving all three more accessible than ever.


Innovative IAQ Technologies

Emerging technologies offer smarter and more efficient ways to tackle winter IAQ challenges:

  • High-Efficiency Particulate Air (HEPA) Filters: These filters capture 99.97% of particles as small as 0.3 microns, including allergens, mold spores, and some bacteria, making them an excellent choice for improving air quality in homes with sensitive occupants.

  • Electromagnetic Filters: Unlike traditional pleated filters, electromagnetic filters use charged surfaces to attract and trap particles. This innovative design reduces resistance, allowing for better airflow and greater energy efficiency.

  • Energy Recovery Ventilators (ERVs): ERVs exchange stale indoor air for fresh outdoor air while retaining heat, ensuring good ventilation without sacrificing warmth. These systems are particularly effective in homes that prioritize energy conservation during winter.


The Role of Sustainability in IAQ Solutions

Sustainable solutions for IAQ extend beyond individual technologies. For instance, many traditional air filters are disposable and contribute significantly to landfill waste. By switching to reusable or recyclable filters, households and businesses can reduce their environmental impact while maintaining effective air filtration.

Additionally, some manufacturers are adopting circular economy practices, designing filters with biodegradable components or creating programs to refurbish and reuse old filters. These innovations align with the growing demand for eco-friendly solutions that minimize waste while addressing IAQ challenges.


Practical Steps for Adopting Sustainable IAQ Solutions

Incorporating sustainable IAQ practices doesn’t require a complete home or HVAC system overhaul. Small, intentional choices can make a significant difference:

  • Choose Long-Lasting Filters: Opt for high-efficiency or reusable filters that reduce waste and provide better performance.

  • Invest in Smart Ventilation Systems: Modern systems like ERVs automatically balance fresh air intake and heat retention, making them energy-efficient for maintaining IAQ during winter.

  • Reduce Source Pollutants: Limit the use of products that emit volatile organic compounds (VOCs), such as certain paints and cleaning agents.

  • Monitor IAQ in Real-Time: Smart air quality monitors provide data on pollutant levels, helping you identify and address issues proactively.



Winter brings its own unique challenges, but it’s also an opportunity to take control of your indoor environment. By addressing IAQ through sustainable choices, regular maintenance, and innovative technologies, you can create a home or workplace that supports well-being while minimizing environmental impact.


The air you breathe indoors this winter doesn’t just keep you warm—it’s a foundation for health, energy savings, and a greener future. Let’s make winter air work for everyone.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page