top of page

The Hidden Cost of Poor Airflow in High-Performance Commercial Buildings

Poor airflow in commercial buildings leads to higher energy bills, reduced indoor air quality, and HVAC wear. Learn how to identify and solv

Ava Montini

Mar 24, 2025

Written by 

Published on

Tags

Why airflow inefficiencies drive up costs, compromise indoor air quality, and create hidden challenges for facility managers


Most commercial and institutional buildings today are designed with performance and efficiency in mind. Energy benchmarks, ESG goals, and occupant well-being are often front and center. But despite those efforts, one critical element of building performance is consistently underdiagnosed: airflow.


Poor airflow can silently affect every corner of your building’s operations — from higher energy consumption and HVAC maintenance costs to reduced indoor air quality (IAQ) and missed sustainability opportunities. It rarely shows up as a red flag on day one, but over time, it chips away at performance in ways that are both measurable and avoidable.


Inefficient Airflow Increases Energy Use — Even in “Efficient” Buildings

In many commercial buildings, HVAC systems account for roughly 30–40% of total energy consumption, according to Natural Resources Canada and ASHRAE. But when airflow is restricted, that percentage can climb significantly.


The most common culprits are high-resistance filters, dirty or aging ductwork, unbalanced systems, or outdated fans. These conditions increase static pressure, which forces HVAC fans to work harder and longer to achieve required airflow levels.


According to a study by the U.S. National Institute of Standards and Technology (NIST), buildings with airflow-related HVAC issues can see energy use increase by up to 30% compared to optimized systems. [1]


Even minor issues can have an outsized impact. A 100,000 sq. ft. office building experiencing elevated fan energy use due to clogged filters or inefficient duct design could face annual utility costs tens of thousands of dollars higher than necessary. For building owners managing multiple sites, that inefficiency compounds quickly.


Airflow and Indoor Air Quality Are Closely Linked


Buildings are dynamic systems, and air quality tends to suffer when airflow is compromised. Insufficient airflow can lead to poor ventilation, uneven air distribution, and pockets of stagnation in rooms or zones. These areas often experience elevated levels of carbon dioxide (CO₂), volatile organic compounds (VOCs), and particulate matter — especially in high-occupancy spaces.


A 2015 study from Harvard’s T.H. Chan School of Public Health found that employees working in well-ventilated buildings performed 61% better on cognitive tasks than those in typical buildings with poor ventilation and air quality. [2]


In schools, researchers have found that students in classrooms with improved ventilation perform better on standardized tests. [3] In healthcare facilities, inadequate air movement can increase the risk of airborne illness transmission.


Common complaints like “stuffy rooms,” temperature inconsistencies, or fatigue can often be traced back to airflow and ventilation issues — even when temperature setpoints and filtration standards are technically being met.


Poor Airflow Wears Down HVAC Systems Faster


Inefficient airflow costs more on your energy bill and accelerates mechanical wear and tear. When fan motors, compressors, and dampers are forced to operate under continuous load, components degrade faster than expected.


This leads to:

  • More frequent repairs and service calls

  • Shortened equipment lifespan

  • Greater downtime and occupant discomfort during peak seasons


A study from the National Air Duct Cleaners Association (NADCA) notes that air distribution restrictions are a key factor in premature HVAC failure and reduced system capacity. [4]


The cost of replacing a rooftop unit, for example, can range from $10,000 to $25,000, depending on building size and complexity — not including indirect costs from temporary system downtime.


Sustainability Targets Can Be Quietly Undermined


Many facilities today are pursuing ESG goals, LEED certification, or local emissions reduction mandates. But airflow inefficiencies can quietly work against those targets by increasing Scope 2 emissions (energy-related emissions) and filter waste.


High-resistance air filters, mainly traditional pleated filters, can contribute to this in two ways:

  1. Increased energy use due to pressure drop

  2. Frequent changeouts, leading to more waste and landfill contribution


According to a 2021 study in Building and Environment, filter pressure drop is one of the most overlooked contributors to unnecessary HVAC energy use — especially when filters are overused or under-maintained. [5]


If a building claims progress in sustainability, it’s important to ensure that filtration and airflow practices align with those claims—both from an energy and waste standpoint.


Missed Opportunities for Incentives and Cost Recovery


One of the lesser-known downsides of inefficient airflow is the lost opportunity to qualify for energy retrofit incentives.


Many utility and government programs across North America offer rebates, grants, or low-interest financing for businesses upgrading HVAC systems, controls, and low-pressure filtration. But to be eligible, buildings often need to demonstrate quantifiable improvements in system performance.


For example, Ontario’s Save on Energy Retrofit Program offers up to 50% of project costs for energy-efficiency upgrades, including those related to ventilation, air handling units, and demand control ventilation systems. [6]


Without data on airflow improvement or energy reduction — or without addressing underlying airflow inefficiencies — buildings may fail to qualify, leaving funding on the table.


Practical Steps to Address Airflow Challenges


The good news is that improving airflow doesn’t require a major capital project. Many impactful changes can be made within existing operations and maintenance cycles.


Here’s where most facilities can start:

  • Conduct a static pressure and airflow assessment to identify bottlenecks

  • Replace high-pressure filters with low-pressure, high-efficiency alternatives

  • Balance and tune your HVAC system, especially if zones have changed due to new usage patterns

  • Install real-time IAQ monitors to detect issues as they emerge, not after complaints arise

  • Track filter changeouts and energy use to capture data for future incentive applications


These strategies are already being implemented in facilities across North America — and in most cases, they deliver measurable improvements in energy efficiency, equipment reliability, and occupant satisfaction.



Airflow may not be the most visible part of your building, but it’s one of the most influential. When ignored, it quietly drives up energy costs, reduces system lifespan, and compromises air quality.


For facility managers and business owners focused on performance, sustainability, and operational clarity, airflow should be on the radar — not just as a maintenance metric but as a lever for long-term efficiency and resilience.


Addressing airflow challenges is a straightforward, high-ROI step that supports healthier, more cost-effective, and future-ready buildings.

Carbon Emissions 101: Breaking Down Embodied, Operational, and More

  • Writer: Ava Montini
    Ava Montini
  • Dec 11, 2024
  • 5 min read

Updated: Dec 17, 2024

Carbon emissions touch every aspect of our lives—from the buildings we live into the devices we use. But, not all emissions are created equal.


While operational emissions from energy use often grab attention, the hidden impact of embodied carbon in materials is just as significant. In this blog, we’ll break down the difference between embodied and operational carbon and explore actionable ways to reduce emissions for a sustainable future.


What is Carbon and Why Does It Matter?

Carbon, in the context of climate change, refers to the greenhouse gases (GHGs) emitted into the atmosphere, primarily carbon dioxide (CO2). These emissions result from activities such as burning fossil fuels, deforestation, and industrial processes. GHGs trap heat in the atmosphere, contributing to global warming and its associated impacts, including rising sea levels, extreme weather events, and biodiversity loss. Humans emitted 36.8 billion metric tons of CO2 in 2022 alone, marking a new record for global emissions. A significant portion of these emissions stems from the energy sector, which accounts for 73% of global emissions, with electricity and heat production making up 42% of that share.





Deforestation and forest degradation account for approximately 11% of global carbon emissions annually. The loss of forests not only releases stored carbon but also reduces the planet’s ability to sequester new carbon. This dual impact underscores the urgent need for forest preservation and reforestation initiatives. To meet the Intergovernmental Panel on Climate Change (IPCC) goal of limiting global warming to 1.5°C, global CO2 emissions must decline by about 45% from 2010 levels by 2030 and reach net zero by 2050.


Reducing carbon emissions is essential to achieving global climate goals, such as the Paris Agreement's target of limiting global warming to 1.5°C. This requires a comprehensive understanding of the different categories of carbon emissions and how they interconnect, paving the way for effective mitigation strategies.


To better understand how carbon emissions are generated, let’s examine two key contributors: embodied and operational carbon.


Embodied Carbon

The Hidden Footprint


Embodied carbon refers to the CO2 emissions associated with the production, transportation, and construction of materials and goods. Unlike operational carbon, which occurs during the use phase of a product or building, embodied carbon is "locked in" from the start.


Lifecycle Stage

Embodied carbon includes emissions from raw material extraction, manufacturing, and supply chain logistics. It is typically fixed and cannot be reduced once the product is created.


Primary Sectors Affected

Construction, manufacturing, and technology production.


Why It Matters

Embodied carbon often represents a significant share of total emissions, especially in industries reliant on energy-intensive materials. The World Green Building Council reports that embodied carbon contributes up to 50% of a building’s total lifecycle emissions.


  • Skanska, a global construction firm, has implemented low-carbon concrete alternatives and tracked embodied carbon through digital tools to align with its net-zero goals.

  • Apple continues to prioritize energy efficiency by optimizing HVAC systems across its facilities. By implementing low-pressure HVAC filters and energy-efficient solutions, Apple reduces the energy required for ventilation, cutting operational carbon emissions. These upgrades contribute to Apple’s commitment to becoming carbon neutral across its entire value chain by 2030.


Actionable Steps

  1. Use low-carbon materials such as recycled steel, bamboo, or cross-laminated timber.

  2. Conduct lifecycle assessments (LCAs) to identify high-impact areas.

  3. Foster partnerships with suppliers that prioritize sustainability.

  4. Incorporate modular designs to reduce material waste and embodied carbon.


Operational Carbon

The Active Emissions


Operational carbon refers to the emissions generated during the use phase of a product or building. These emissions result primarily from energy consumption for heating, cooling, lighting, and operating machinery.


Lifecycle Stage

Operational carbon is ongoing and occurs throughout the usable life of a building, product, or system.


Energy Sources

Fossil fuels, grid electricity, and renewable energy significantly influence operational carbon levels.


Major Contributors

Commercial buildings, data centers, and transportation systems are key sources of operational carbon.


Why It Matters

Operational carbon is the dominant contributor to global emissions in many industries. The International Energy Agency (IEA) notes that buildings account for approximately 30% of global final energy consumption and 26% of global energy-related CO₂ emissions.


A substantial share of this energy use is attributed to heating and cooling systems. Specifically, space heating and cooling, along with hot water, are estimated to account for roughly half of global energy consumption in buildings. This highlights the significant impact of heating and cooling systems on building energy consumption and emissions.


Actionable Steps

  1. Transition to renewable energy sources such as solar or wind power.

  2. Implement energy-efficient appliances, HVAC systems, and LED lighting.

  3. Leverage building management systems (BMS) to optimize energy use in real time.

  4. Set energy benchmarks and continuously monitor performance.


Beyond Embodied and Operational Carbon: Other Key Terms


1. Carbon Offset

Refers to compensating for emissions by investing in projects that reduce or remove CO2 from the atmosphere, such as reforestation or renewable energy initiatives.

  • Delta Airlines invests in carbon offset programs, including reforestation projects in Kenya, as part of its commitment to becoming the first carbon-neutral airline.


2. Carbon Intensity

Measures the amount of CO2 emitted per unit of energy or production. This metric helps businesses evaluate and improve efficiency.

  • Tesla measures the carbon intensity of its manufacturing processes to ensure sustainability across its electric vehicle lifecycle.


3. Sequestered Carbon

Describes carbon captured and stored in natural or artificial reservoirs. Forests, soil, and biochar are examples of natural carbon sinks.


4. Scope 1, 2, and 3 Emissions (from the Greenhouse Gas Protocol)

Scope 1

Direct emissions from company-owned resources.


Scope 2

Indirect emissions from purchased energy.


Scope 3

Emissions from a company’s value chain, including suppliers and end-users.

Strategies for a Holistic Carbon Reduction Plan

To create impactful carbon reduction strategies, organizations must address both embodied and operational carbon and then their broader carbon footprint.


Here are some tips:

  1. Adopt Lifecycle Assessments (LCAs): Evaluate the total carbon impact of products or projects from cradle to grave.

  2. Invest in Innovation: Support research and development for low-carbon technologies, such as carbon capture and storage (CCS).

  3. Set Science-Based Targets: Align emission reduction goals with the latest climate science.

  4. Engage Stakeholders: Collaborate with suppliers, customers, and employees to foster a culture of sustainability.

  5. Leverage Digital Solutions: Use AI and IoT technologies to monitor and optimize energy usage, reducing operational carbon.

  6. Adopt Circular Economy Practices: Design products for reuse and recycling to minimize waste and embodied carbon.


Embodied carbon reveals the hidden costs of our built environment, while operational carbon highlights ongoing emissions challenges. By taking a lifecycle approach and addressing emissions at every stage, we can pave the way for a sustainable, net-zero future.


And business leaders play a pivotal role in this transition. Prioritizing sustainability in supply chains, investing in renewable energy, and adopting innovative practices allows companies to drive change that benefits both the planet and their bottom line.


As awareness grows, the responsibility to act lies with every sector of society. From adopting renewable energy solutions to rethinking material choices, the path forward demands innovation, collaboration, and a commitment to reducing carbon footprints.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

​

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page