top of page

The Hidden Cost of Poor Airflow in High-Performance Commercial Buildings

Poor airflow in commercial buildings leads to higher energy bills, reduced indoor air quality, and HVAC wear. Learn how to identify and solv

Ava Montini

Mar 24, 2025

Written by 

Published on

Tags

Why airflow inefficiencies drive up costs, compromise indoor air quality, and create hidden challenges for facility managers


Most commercial and institutional buildings today are designed with performance and efficiency in mind. Energy benchmarks, ESG goals, and occupant well-being are often front and center. But despite those efforts, one critical element of building performance is consistently underdiagnosed: airflow.


Poor airflow can silently affect every corner of your building’s operations — from higher energy consumption and HVAC maintenance costs to reduced indoor air quality (IAQ) and missed sustainability opportunities. It rarely shows up as a red flag on day one, but over time, it chips away at performance in ways that are both measurable and avoidable.


Inefficient Airflow Increases Energy Use — Even in “Efficient” Buildings

In many commercial buildings, HVAC systems account for roughly 30–40% of total energy consumption, according to Natural Resources Canada and ASHRAE. But when airflow is restricted, that percentage can climb significantly.


The most common culprits are high-resistance filters, dirty or aging ductwork, unbalanced systems, or outdated fans. These conditions increase static pressure, which forces HVAC fans to work harder and longer to achieve required airflow levels.


According to a study by the U.S. National Institute of Standards and Technology (NIST), buildings with airflow-related HVAC issues can see energy use increase by up to 30% compared to optimized systems. [1]


Even minor issues can have an outsized impact. A 100,000 sq. ft. office building experiencing elevated fan energy use due to clogged filters or inefficient duct design could face annual utility costs tens of thousands of dollars higher than necessary. For building owners managing multiple sites, that inefficiency compounds quickly.


Airflow and Indoor Air Quality Are Closely Linked


Buildings are dynamic systems, and air quality tends to suffer when airflow is compromised. Insufficient airflow can lead to poor ventilation, uneven air distribution, and pockets of stagnation in rooms or zones. These areas often experience elevated levels of carbon dioxide (CO₂), volatile organic compounds (VOCs), and particulate matter — especially in high-occupancy spaces.


A 2015 study from Harvard’s T.H. Chan School of Public Health found that employees working in well-ventilated buildings performed 61% better on cognitive tasks than those in typical buildings with poor ventilation and air quality. [2]


In schools, researchers have found that students in classrooms with improved ventilation perform better on standardized tests. [3] In healthcare facilities, inadequate air movement can increase the risk of airborne illness transmission.


Common complaints like “stuffy rooms,” temperature inconsistencies, or fatigue can often be traced back to airflow and ventilation issues — even when temperature setpoints and filtration standards are technically being met.


Poor Airflow Wears Down HVAC Systems Faster


Inefficient airflow costs more on your energy bill and accelerates mechanical wear and tear. When fan motors, compressors, and dampers are forced to operate under continuous load, components degrade faster than expected.


This leads to:

  • More frequent repairs and service calls

  • Shortened equipment lifespan

  • Greater downtime and occupant discomfort during peak seasons


A study from the National Air Duct Cleaners Association (NADCA) notes that air distribution restrictions are a key factor in premature HVAC failure and reduced system capacity. [4]


The cost of replacing a rooftop unit, for example, can range from $10,000 to $25,000, depending on building size and complexity — not including indirect costs from temporary system downtime.


Sustainability Targets Can Be Quietly Undermined


Many facilities today are pursuing ESG goals, LEED certification, or local emissions reduction mandates. But airflow inefficiencies can quietly work against those targets by increasing Scope 2 emissions (energy-related emissions) and filter waste.


High-resistance air filters, mainly traditional pleated filters, can contribute to this in two ways:

  1. Increased energy use due to pressure drop

  2. Frequent changeouts, leading to more waste and landfill contribution


According to a 2021 study in Building and Environment, filter pressure drop is one of the most overlooked contributors to unnecessary HVAC energy use — especially when filters are overused or under-maintained. [5]


If a building claims progress in sustainability, it’s important to ensure that filtration and airflow practices align with those claims—both from an energy and waste standpoint.


Missed Opportunities for Incentives and Cost Recovery


One of the lesser-known downsides of inefficient airflow is the lost opportunity to qualify for energy retrofit incentives.


Many utility and government programs across North America offer rebates, grants, or low-interest financing for businesses upgrading HVAC systems, controls, and low-pressure filtration. But to be eligible, buildings often need to demonstrate quantifiable improvements in system performance.


For example, Ontario’s Save on Energy Retrofit Program offers up to 50% of project costs for energy-efficiency upgrades, including those related to ventilation, air handling units, and demand control ventilation systems. [6]


Without data on airflow improvement or energy reduction — or without addressing underlying airflow inefficiencies — buildings may fail to qualify, leaving funding on the table.


Practical Steps to Address Airflow Challenges


The good news is that improving airflow doesn’t require a major capital project. Many impactful changes can be made within existing operations and maintenance cycles.


Here’s where most facilities can start:

  • Conduct a static pressure and airflow assessment to identify bottlenecks

  • Replace high-pressure filters with low-pressure, high-efficiency alternatives

  • Balance and tune your HVAC system, especially if zones have changed due to new usage patterns

  • Install real-time IAQ monitors to detect issues as they emerge, not after complaints arise

  • Track filter changeouts and energy use to capture data for future incentive applications


These strategies are already being implemented in facilities across North America — and in most cases, they deliver measurable improvements in energy efficiency, equipment reliability, and occupant satisfaction.



Airflow may not be the most visible part of your building, but it’s one of the most influential. When ignored, it quietly drives up energy costs, reduces system lifespan, and compromises air quality.


For facility managers and business owners focused on performance, sustainability, and operational clarity, airflow should be on the radar — not just as a maintenance metric but as a lever for long-term efficiency and resilience.


Addressing airflow challenges is a straightforward, high-ROI step that supports healthier, more cost-effective, and future-ready buildings.

The Environmental Advantages of Building Green

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Jul 28, 2023
  • 3 min read

Updated: Jul 9, 2024

Tiered green glass office building surrounded by trees and even has greenery on the rooftop
Green building takes into account the life cycle of a building, including the impact of construction, operation, maintenance, and eventual demolition or recycling to minimize its impact on the environment..

As concerns about climate change and the environment continue to grow, more and more people are turning to sustainable building practices. One popular approach is green building, which seeks to minimize the environmental impact of construction and promote a healthier, more sustainable way of living. In this post, we will explore the concept of green building and its environmental benefits.


Defining Green Building

A Green building, also known as sustainable building or eco-building, refers to the practice of designing and constructing buildings in a way that minimizes their environmental impact. The environmental advantages of Green Building include everything from reducing energy and water consumption to using eco-friendly materials and promoting a healthier indoor environment. Green building also takes into account the life cycle of a building, including the impact of construction, operation, maintenance, and eventual demolition or recycling.


Green building is a holistic approach that looks at the entire building and its surroundings. For example, a green building might be designed to work harmoniously with the natural environment, incorporating elements like passive solar heating or natural ventilation. It might also prioritize using recycled or locally sourced materials, reducing transportation emissions and supporting the local economy.


Environmental Advantages of Building Green

Green building offers a wide range of environmental benefits. Here are some examples of the most significant advantages:

  1. Reduced carbon footprint: Buildings significantly contribute to greenhouse gas emissions and climate change. Green buildings are designed to minimize this impact by reducing energy consumption and using renewable energy sources like solar or wind power. By doing so, they help to reduce the amount of greenhouse gas emitted into the atmosphere.

  2. Conservation of natural resources: Traditional building practices often rely on non-renewable resources like virgin timber and fossil fuels. Green building prioritizes using sustainable materials, such as recycled steel, bamboo, and reclaimed wood. It also promotes using water-efficient fixtures, like low-flow toilets and showerheads, and reusing greywater. By reducing the demand for new resources and minimizing waste, green building helps to conserve natural resources and reduce the environmental impact of construction.

  3. Improved indoor air quality: Traditional building materials often contain harmful chemicals and pollutants that can affect indoor air quality. On the other hand, green building emphasizes the use of non-toxic, low-emission materials, such as low-VOC paints, adhesives, and sealants. It also prioritizes ventilation and air filtration systems to promote a healthier indoor environment.

  4. Energy efficiency: Green buildings are designed to use less energy, reducing fossil fuel demand and mitigating climate change’s effects. This can be achieved through various measures, such as using insulation and air sealing to reduce heat loss, installing energy-efficient HVAC filters, lighting and appliances, and utilizing renewable energy sources like solar or wind power.


Real-Life Examples

Green building is becoming increasingly common around the world. Here are some real-life examples of green buildings and their environmental benefits:


Facade of the Bullit Center in Seattle Washington
The Bullit Centre's sustainable architecture aims to achieve net-zero in energy and water usage.

Seattle, United States

The Bullitt Center is a 6-story office building that is designed to be completely self-sustaining, generating its own electricity, collecting and filtering rainwater, and composting its own waste. It is also constructed with a range of eco-friendly materials, including Forest Stewardship Council-certified wood and low-VOC finishes.


Street view of the Pixel Building in Melbourne, Australia
The Pixel Building is best known for being Australia's first carbon-neutral office building. powered entirely by renewable energy.

Melbourne, Australia

The Pixel Building is a multi-use building powered entirely by renewable energy, with a 98-kilowatt solar array on the roof. It is also constructed with a range of sustainable materials, such as recycled content carpet tiles and low-VOC paints. The building is designed to be carbon-neutral over its lifetime, offsetting any carbon emissions produced during construction and operation.


The Edge Building in Amsterdam
The Edge in Amsterdam is best known for being one of the most sustainable and smart office buildings in the world.

Amsterdam, Netherlands

The Edge is a futuristic office building designed to be one of the most sustainable buildings in the world. It features a range of innovative green technologies, including a smart lighting system that adjusts to the needs of individual employees and a rooftop solar array that provides all of the building’s electricity needs. The building is also designed to be highly energy-efficient, with triple-glazed windows and a high level of insulation.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page