top of page

Carbon Emissions 101: Breaking Down Embodied, Operational, and More

Understanding embodied and operational carbon, their impacts, and actionable strategies for reducing emissions effectively.

Ava Montini

Dec 11, 2024

Written by 

Published on

Tags

Carbon emissions touch every aspect of our lives—from the buildings we live into the devices we use. But, not all emissions are created equal.


While operational emissions from energy use often grab attention, the hidden impact of embodied carbon in materials is just as significant. In this blog, we’ll break down the difference between embodied and operational carbon and explore actionable ways to reduce emissions for a sustainable future.


What is Carbon and Why Does It Matter?

Carbon, in the context of climate change, refers to the greenhouse gases (GHGs) emitted into the atmosphere, primarily carbon dioxide (CO2). These emissions result from activities such as burning fossil fuels, deforestation, and industrial processes. GHGs trap heat in the atmosphere, contributing to global warming and its associated impacts, including rising sea levels, extreme weather events, and biodiversity loss. Humans emitted 36.8 billion metric tons of CO2 in 2022 alone, marking a new record for global emissions. A significant portion of these emissions stems from the energy sector, which accounts for 73% of global emissions, with electricity and heat production making up 42% of that share.





Deforestation and forest degradation account for approximately 11% of global carbon emissions annually. The loss of forests not only releases stored carbon but also reduces the planet’s ability to sequester new carbon. This dual impact underscores the urgent need for forest preservation and reforestation initiatives. To meet the Intergovernmental Panel on Climate Change (IPCC) goal of limiting global warming to 1.5°C, global CO2 emissions must decline by about 45% from 2010 levels by 2030 and reach net zero by 2050.


Reducing carbon emissions is essential to achieving global climate goals, such as the Paris Agreement's target of limiting global warming to 1.5°C. This requires a comprehensive understanding of the different categories of carbon emissions and how they interconnect, paving the way for effective mitigation strategies.


To better understand how carbon emissions are generated, let’s examine two key contributors: embodied and operational carbon.


Embodied Carbon

The Hidden Footprint


Embodied carbon refers to the CO2 emissions associated with the production, transportation, and construction of materials and goods. Unlike operational carbon, which occurs during the use phase of a product or building, embodied carbon is "locked in" from the start.


Lifecycle Stage

Embodied carbon includes emissions from raw material extraction, manufacturing, and supply chain logistics. It is typically fixed and cannot be reduced once the product is created.


Primary Sectors Affected

Construction, manufacturing, and technology production.


Why It Matters

Embodied carbon often represents a significant share of total emissions, especially in industries reliant on energy-intensive materials. The World Green Building Council reports that embodied carbon contributes up to 50% of a building’s total lifecycle emissions.


  • Skanska, a global construction firm, has implemented low-carbon concrete alternatives and tracked embodied carbon through digital tools to align with its net-zero goals.

  • Apple continues to prioritize energy efficiency by optimizing HVAC systems across its facilities. By implementing low-pressure HVAC filters and energy-efficient solutions, Apple reduces the energy required for ventilation, cutting operational carbon emissions. These upgrades contribute to Apple’s commitment to becoming carbon neutral across its entire value chain by 2030.


Actionable Steps

  1. Use low-carbon materials such as recycled steel, bamboo, or cross-laminated timber.

  2. Conduct lifecycle assessments (LCAs) to identify high-impact areas.

  3. Foster partnerships with suppliers that prioritize sustainability.

  4. Incorporate modular designs to reduce material waste and embodied carbon.


Operational Carbon

The Active Emissions


Operational carbon refers to the emissions generated during the use phase of a product or building. These emissions result primarily from energy consumption for heating, cooling, lighting, and operating machinery.


Lifecycle Stage

Operational carbon is ongoing and occurs throughout the usable life of a building, product, or system.


Energy Sources

Fossil fuels, grid electricity, and renewable energy significantly influence operational carbon levels.


Major Contributors

Commercial buildings, data centers, and transportation systems are key sources of operational carbon.


Why It Matters

Operational carbon is the dominant contributor to global emissions in many industries. The International Energy Agency (IEA) notes that buildings account for approximately 30% of global final energy consumption and 26% of global energy-related CO₂ emissions.


A substantial share of this energy use is attributed to heating and cooling systems. Specifically, space heating and cooling, along with hot water, are estimated to account for roughly half of global energy consumption in buildings. This highlights the significant impact of heating and cooling systems on building energy consumption and emissions.


Actionable Steps

  1. Transition to renewable energy sources such as solar or wind power.

  2. Implement energy-efficient appliances, HVAC systems, and LED lighting.

  3. Leverage building management systems (BMS) to optimize energy use in real time.

  4. Set energy benchmarks and continuously monitor performance.


Beyond Embodied and Operational Carbon: Other Key Terms


1. Carbon Offset

Refers to compensating for emissions by investing in projects that reduce or remove CO2 from the atmosphere, such as reforestation or renewable energy initiatives.

  • Delta Airlines invests in carbon offset programs, including reforestation projects in Kenya, as part of its commitment to becoming the first carbon-neutral airline.


2. Carbon Intensity

Measures the amount of CO2 emitted per unit of energy or production. This metric helps businesses evaluate and improve efficiency.

  • Tesla measures the carbon intensity of its manufacturing processes to ensure sustainability across its electric vehicle lifecycle.


3. Sequestered Carbon

Describes carbon captured and stored in natural or artificial reservoirs. Forests, soil, and biochar are examples of natural carbon sinks.


4. Scope 1, 2, and 3 Emissions (from the Greenhouse Gas Protocol)

Scope 1

Direct emissions from company-owned resources.


Scope 2

Indirect emissions from purchased energy.


Scope 3

Emissions from a company’s value chain, including suppliers and end-users.

Strategies for a Holistic Carbon Reduction Plan

To create impactful carbon reduction strategies, organizations must address both embodied and operational carbon and then their broader carbon footprint.


Here are some tips:

  1. Adopt Lifecycle Assessments (LCAs): Evaluate the total carbon impact of products or projects from cradle to grave.

  2. Invest in Innovation: Support research and development for low-carbon technologies, such as carbon capture and storage (CCS).

  3. Set Science-Based Targets: Align emission reduction goals with the latest climate science.

  4. Engage Stakeholders: Collaborate with suppliers, customers, and employees to foster a culture of sustainability.

  5. Leverage Digital Solutions: Use AI and IoT technologies to monitor and optimize energy usage, reducing operational carbon.

  6. Adopt Circular Economy Practices: Design products for reuse and recycling to minimize waste and embodied carbon.


Embodied carbon reveals the hidden costs of our built environment, while operational carbon highlights ongoing emissions challenges. By taking a lifecycle approach and addressing emissions at every stage, we can pave the way for a sustainable, net-zero future.


And business leaders play a pivotal role in this transition. Prioritizing sustainability in supply chains, investing in renewable energy, and adopting innovative practices allows companies to drive change that benefits both the planet and their bottom line.


As awareness grows, the responsibility to act lies with every sector of society. From adopting renewable energy solutions to rethinking material choices, the path forward demands innovation, collaboration, and a commitment to reducing carbon footprints.

Writer's pictureJennifer Crowley

IAQ Excellence through Leadership: Promoting Indoor Air Quality in Organizations

Business leader standing up and speaking to his attentive team in an open boardroom setting
Organizational Leaders can create a healthier and more supportive work environment through IAQ

As leaders, we understand the importance of fostering a healthy and productive work environment for our teams. One often-overlooked aspect of workplace well-being is indoor air quality (IAQ). Poor IAQ can negatively impact employee health, productivity, and overall satisfaction. Therefore, it is essential for organizational leaders to prioritize IAQ excellence and promote a culture of indoor environmental quality within their organizations. In this blog post, we will explore the role of leadership in advancing IAQ initiatives and share strategies for cultivating a healthier indoor environment for employees.

 

The Impact of Indoor Air Quality on Workplace Well-being: 

Indoor air quality plays a significant role in shaping the overall indoor environment and the well-being of occupants. Poor IAQ can lead to a range of health issues, including respiratory problems, allergies, headaches, and fatigue, which can directly impact employee productivity and performance. Additionally, inadequate ventilation and indoor pollutants can contribute to discomfort, decreased concentration, and increased absenteeism among employees. By prioritizing IAQ excellence, leaders can create a healthier and more supportive work environment conducive to employee well-being and success.

 

The Role of Leadership in IAQ Excellence:

  1. Setting Clear Priorities: As leaders, it is essential to prioritize IAQ excellence as a fundamental aspect of organizational health and safety. Communicate the importance of IAQ to all stakeholders and establish clear goals and objectives for improving indoor environmental quality within the organization.

  2. Allocating Resources: Provide adequate resources, including budgetary allocations and personnel support, to implement IAQ initiatives effectively. Invest in advanced HVAC systems, air filtration technologies, and IAQ monitoring tools to ensure optimal indoor air quality levels.

  3. Leading by Example: Demonstrate a commitment to IAQ excellence by incorporating indoor environmental quality considerations into organizational policies, practices, and decision-making processes. Lead by example by adhering to IAQ guidelines and promoting healthy indoor habits among employees.

  4. Educating and Empowering Employees: Raise awareness about the importance of IAQ and provide training and educational resources to employees on maintaining healthy indoor environments. Empower employees to contribute to IAQ initiatives by encouraging open communication, feedback, and participation in indoor environmental quality programs.

  5. Collaborating with Experts: Seek guidance from IAQ experts, environmental consultants, and HVAC professionals to assess indoor air quality conditions, identify potential IAQ issues, and implement effective solutions. Collaborate with interdisciplinary teams to develop comprehensive IAQ strategies tailored to the organization's unique needs and priorities.


Multi-racial group of employees walking through the office in conversation
Promote employee health and wellness initiatives that support IAQ excellence

Evangelizing IAQ from Within:

  1. Encourage Open Communication: Foster a culture of transparency and open communication regarding IAQ concerns and initiatives. Encourage employees to report any IAQ-related issues or discomfort promptly and address concerns in a timely and responsive manner.

  2. Implement IAQ Policies and Guidelines: Establish clear IAQ policies, guidelines, and best practices to ensure consistent indoor environmental quality standards across the organization. Communicate IAQ protocols and procedures to employees and provide guidance on maintaining healthy indoor habits.

  3. Create Healthy Indoor Environments: Implement measures to improve indoor air quality, such as proper ventilation, air filtration, humidity control, and the use of low-emission building materials. Design workspaces with IAQ considerations in mind, incorporating natural ventilation, access to daylight, and greenery to enhance employee comfort and well-being.

  4. Foster a Culture of Wellness: Promote employee health and wellness initiatives that support IAQ excellence, such as wellness programs, ergonomic assessments, and stress management resources. Encourage physical activity, healthy eating habits, and mindfulness practices to enhance overall well-being and resilience.

  5. Monitor and Evaluate Performance: Regularly monitor and evaluate IAQ performance metrics to assess the effectiveness of implemented measures and identify areas for improvement. Conduct IAQ audits, air quality testing, and occupant surveys to gather feedback and ensure continuous IAQ excellence within the organization.

 

As organizational leaders, we have a responsibility to prioritize the health, safety, and well-being of our employees. By promoting a culture of IAQ excellence and investing in indoor environmental quality initiatives, we can create healthier, more productive work environments that support employee satisfaction, engagement, and success. Together, let us lead the way in championing IAQ excellence and fostering healthier indoor environments for all.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page