top of page

The Hidden Cost of Poor Airflow in High-Performance Commercial Buildings

Poor airflow in commercial buildings leads to higher energy bills, reduced indoor air quality, and HVAC wear. Learn how to identify and solv

Ava Montini

Mar 24, 2025

Written by 

Published on

Tags

Why airflow inefficiencies drive up costs, compromise indoor air quality, and create hidden challenges for facility managers


Most commercial and institutional buildings today are designed with performance and efficiency in mind. Energy benchmarks, ESG goals, and occupant well-being are often front and center. But despite those efforts, one critical element of building performance is consistently underdiagnosed: airflow.


Poor airflow can silently affect every corner of your building’s operations — from higher energy consumption and HVAC maintenance costs to reduced indoor air quality (IAQ) and missed sustainability opportunities. It rarely shows up as a red flag on day one, but over time, it chips away at performance in ways that are both measurable and avoidable.


Inefficient Airflow Increases Energy Use — Even in “Efficient” Buildings

In many commercial buildings, HVAC systems account for roughly 30–40% of total energy consumption, according to Natural Resources Canada and ASHRAE. But when airflow is restricted, that percentage can climb significantly.


The most common culprits are high-resistance filters, dirty or aging ductwork, unbalanced systems, or outdated fans. These conditions increase static pressure, which forces HVAC fans to work harder and longer to achieve required airflow levels.


According to a study by the U.S. National Institute of Standards and Technology (NIST), buildings with airflow-related HVAC issues can see energy use increase by up to 30% compared to optimized systems. [1]


Even minor issues can have an outsized impact. A 100,000 sq. ft. office building experiencing elevated fan energy use due to clogged filters or inefficient duct design could face annual utility costs tens of thousands of dollars higher than necessary. For building owners managing multiple sites, that inefficiency compounds quickly.


Airflow and Indoor Air Quality Are Closely Linked


Buildings are dynamic systems, and air quality tends to suffer when airflow is compromised. Insufficient airflow can lead to poor ventilation, uneven air distribution, and pockets of stagnation in rooms or zones. These areas often experience elevated levels of carbon dioxide (CO₂), volatile organic compounds (VOCs), and particulate matter — especially in high-occupancy spaces.


A 2015 study from Harvard’s T.H. Chan School of Public Health found that employees working in well-ventilated buildings performed 61% better on cognitive tasks than those in typical buildings with poor ventilation and air quality. [2]


In schools, researchers have found that students in classrooms with improved ventilation perform better on standardized tests. [3] In healthcare facilities, inadequate air movement can increase the risk of airborne illness transmission.


Common complaints like “stuffy rooms,” temperature inconsistencies, or fatigue can often be traced back to airflow and ventilation issues — even when temperature setpoints and filtration standards are technically being met.


Poor Airflow Wears Down HVAC Systems Faster


Inefficient airflow costs more on your energy bill and accelerates mechanical wear and tear. When fan motors, compressors, and dampers are forced to operate under continuous load, components degrade faster than expected.


This leads to:

  • More frequent repairs and service calls

  • Shortened equipment lifespan

  • Greater downtime and occupant discomfort during peak seasons


A study from the National Air Duct Cleaners Association (NADCA) notes that air distribution restrictions are a key factor in premature HVAC failure and reduced system capacity. [4]


The cost of replacing a rooftop unit, for example, can range from $10,000 to $25,000, depending on building size and complexity — not including indirect costs from temporary system downtime.


Sustainability Targets Can Be Quietly Undermined


Many facilities today are pursuing ESG goals, LEED certification, or local emissions reduction mandates. But airflow inefficiencies can quietly work against those targets by increasing Scope 2 emissions (energy-related emissions) and filter waste.


High-resistance air filters, mainly traditional pleated filters, can contribute to this in two ways:

  1. Increased energy use due to pressure drop

  2. Frequent changeouts, leading to more waste and landfill contribution


According to a 2021 study in Building and Environment, filter pressure drop is one of the most overlooked contributors to unnecessary HVAC energy use — especially when filters are overused or under-maintained. [5]


If a building claims progress in sustainability, it’s important to ensure that filtration and airflow practices align with those claims—both from an energy and waste standpoint.


Missed Opportunities for Incentives and Cost Recovery


One of the lesser-known downsides of inefficient airflow is the lost opportunity to qualify for energy retrofit incentives.


Many utility and government programs across North America offer rebates, grants, or low-interest financing for businesses upgrading HVAC systems, controls, and low-pressure filtration. But to be eligible, buildings often need to demonstrate quantifiable improvements in system performance.


For example, Ontario’s Save on Energy Retrofit Program offers up to 50% of project costs for energy-efficiency upgrades, including those related to ventilation, air handling units, and demand control ventilation systems. [6]


Without data on airflow improvement or energy reduction — or without addressing underlying airflow inefficiencies — buildings may fail to qualify, leaving funding on the table.


Practical Steps to Address Airflow Challenges


The good news is that improving airflow doesn’t require a major capital project. Many impactful changes can be made within existing operations and maintenance cycles.


Here’s where most facilities can start:

  • Conduct a static pressure and airflow assessment to identify bottlenecks

  • Replace high-pressure filters with low-pressure, high-efficiency alternatives

  • Balance and tune your HVAC system, especially if zones have changed due to new usage patterns

  • Install real-time IAQ monitors to detect issues as they emerge, not after complaints arise

  • Track filter changeouts and energy use to capture data for future incentive applications


These strategies are already being implemented in facilities across North America — and in most cases, they deliver measurable improvements in energy efficiency, equipment reliability, and occupant satisfaction.



Airflow may not be the most visible part of your building, but it’s one of the most influential. When ignored, it quietly drives up energy costs, reduces system lifespan, and compromises air quality.


For facility managers and business owners focused on performance, sustainability, and operational clarity, airflow should be on the radar — not just as a maintenance metric but as a lever for long-term efficiency and resilience.


Addressing airflow challenges is a straightforward, high-ROI step that supports healthier, more cost-effective, and future-ready buildings.

Electrostatic Air Filter vs. HEPA: Which One Should You Choose?

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Jul 31, 2023
  • 3 min read

Updated: Jul 9, 2024

An electrostatic filter sits beside a HEPA filter
Electrostatic Air Filter and HEPA technologies have their pros and cons let's explore their differences to help you make an informed decision on which will work best for your business..

When it comes to air filtration, there are two popular options; the Electrostatic Air Filter vs. HEPA. Both technologies have their pros and cons, and choosing between them can be confusing. In this blog, we’ll compare electrostatic air filters and HEPA filters to explore their differences to help you make an informed decision.


What are Electrostatic Air Filters?

The main idea of electrostatic filters is to utilize static electricity to attract and trap particles on the charged fibres and carbon paths. So instead of getting pulled through and being blocked by filter material like standard filters, the particles are attracted to the filter media.


Comparison chart of ionized vs. polarized technology
Let's compare Ionized vs. Polarized technology side by side.

You will encounter two standard electrostatic technologies when searching the different types of electrostatic filters. In this article, we will be comparing the two:

  1. Electrostatic Ionized Technology

  2. Electrostatic Polarized Technology


Unlike the more common ionizing technology found in most electrostatic air filters, polarized-media air cleaners do an exceptional job of removing sub-micron (<1 micron in size) particles without the efficiency loss associated with precipitating electronic air cleaners. In addition, as each particle attaches itself to the fibre strands, it, in turn, becomes part of the collection process, thereby increasing the effectiveness of the filter as it loads. Polarized media also produces no ozone – making the filter better, not only in performance but for our health.


Pros of Electrostatic Polarized Air Filters:

  1. Polarized-media air cleaners do an exceptional job of removing sub-micron (<1 micron in size) particles without the efficiency loss associated with precipitating electronic air cleaners

  2. Increase HVAC system efficiency

  3. They’re relatively inexpensive compared to HEPA filters.


What are HEPA Filters?

HEPA filters are made of tightly woven fibres that trap airborne particles as air passes through. They’re designed to capture particles as small as 0.3 microns, including dust, pollen, pet dander, and even viruses.


HEPA filters are designed to remove 99.97% of particles that are 0.3 microns or larger in size; This includes particles such as smoke, bacteria, and viruses. Since HEPA filters are so efficient, they cause a higher pressure drop than filters with MERV ratings. Given their high efficiency, HEPA filters are best suited for rooms where air quality is a concern, such as in hospitals, laboratories, and cleanrooms.


Many HVAC systems are not designed for HEPA filters, but these filters are available as portable air cleaners or vacuum cleaners. They can be used in homes to improve indoor air quality, particularly for people with allergies or respiratory issues.


Pros of HEPA HVAC Filters:

  1. They’re highly effective at capturing airborne particles, including viruses and bacteria.

  2. They’re ideal for people with allergies or respiratory issues.


Cons of HEPA HVAC Filters:

  1. Not as cost-effective.

  2. Decreased HVAC airflow.


Electrostatic Air Filter vs. HEPA: Which is Better?


Both the electrostatic air filter and HEPA filter have their strengths and weaknesses. The choice between the two will depend on your specific needs. However, the Blade Air Pro Filter Series is the best option for businesses looking for energy savings and easier maintenance while maintaining better filtration than traditional filters. You can improve indoor air quality while lowering energy consumption by up to 75% and reducing maintenance costs by up to 35%.


Utilizing active polarization fields to bind the micro-particulates together that standard filters let pass, capture and kill viruses, bacteria, mould, and removes VOCs and other harmful particulates. This field binds the micro-particulates together, deactivates the viruses/bacteria and traps them in the filter.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page