top of page

The Hidden Cost of Poor Airflow in High-Performance Commercial Buildings

Poor airflow in commercial buildings leads to higher energy bills, reduced indoor air quality, and HVAC wear. Learn how to identify and solv

Ava Montini

Mar 24, 2025

Written by 

Published on

Tags

Why airflow inefficiencies drive up costs, compromise indoor air quality, and create hidden challenges for facility managers


Most commercial and institutional buildings today are designed with performance and efficiency in mind. Energy benchmarks, ESG goals, and occupant well-being are often front and center. But despite those efforts, one critical element of building performance is consistently underdiagnosed: airflow.


Poor airflow can silently affect every corner of your building’s operations — from higher energy consumption and HVAC maintenance costs to reduced indoor air quality (IAQ) and missed sustainability opportunities. It rarely shows up as a red flag on day one, but over time, it chips away at performance in ways that are both measurable and avoidable.


Inefficient Airflow Increases Energy Use — Even in “Efficient” Buildings

In many commercial buildings, HVAC systems account for roughly 30–40% of total energy consumption, according to Natural Resources Canada and ASHRAE. But when airflow is restricted, that percentage can climb significantly.


The most common culprits are high-resistance filters, dirty or aging ductwork, unbalanced systems, or outdated fans. These conditions increase static pressure, which forces HVAC fans to work harder and longer to achieve required airflow levels.


According to a study by the U.S. National Institute of Standards and Technology (NIST), buildings with airflow-related HVAC issues can see energy use increase by up to 30% compared to optimized systems. [1]


Even minor issues can have an outsized impact. A 100,000 sq. ft. office building experiencing elevated fan energy use due to clogged filters or inefficient duct design could face annual utility costs tens of thousands of dollars higher than necessary. For building owners managing multiple sites, that inefficiency compounds quickly.


Airflow and Indoor Air Quality Are Closely Linked


Buildings are dynamic systems, and air quality tends to suffer when airflow is compromised. Insufficient airflow can lead to poor ventilation, uneven air distribution, and pockets of stagnation in rooms or zones. These areas often experience elevated levels of carbon dioxide (CO₂), volatile organic compounds (VOCs), and particulate matter — especially in high-occupancy spaces.


A 2015 study from Harvard’s T.H. Chan School of Public Health found that employees working in well-ventilated buildings performed 61% better on cognitive tasks than those in typical buildings with poor ventilation and air quality. [2]


In schools, researchers have found that students in classrooms with improved ventilation perform better on standardized tests. [3] In healthcare facilities, inadequate air movement can increase the risk of airborne illness transmission.


Common complaints like “stuffy rooms,” temperature inconsistencies, or fatigue can often be traced back to airflow and ventilation issues — even when temperature setpoints and filtration standards are technically being met.


Poor Airflow Wears Down HVAC Systems Faster


Inefficient airflow costs more on your energy bill and accelerates mechanical wear and tear. When fan motors, compressors, and dampers are forced to operate under continuous load, components degrade faster than expected.


This leads to:

  • More frequent repairs and service calls

  • Shortened equipment lifespan

  • Greater downtime and occupant discomfort during peak seasons


A study from the National Air Duct Cleaners Association (NADCA) notes that air distribution restrictions are a key factor in premature HVAC failure and reduced system capacity. [4]


The cost of replacing a rooftop unit, for example, can range from $10,000 to $25,000, depending on building size and complexity — not including indirect costs from temporary system downtime.


Sustainability Targets Can Be Quietly Undermined


Many facilities today are pursuing ESG goals, LEED certification, or local emissions reduction mandates. But airflow inefficiencies can quietly work against those targets by increasing Scope 2 emissions (energy-related emissions) and filter waste.


High-resistance air filters, mainly traditional pleated filters, can contribute to this in two ways:

  1. Increased energy use due to pressure drop

  2. Frequent changeouts, leading to more waste and landfill contribution


According to a 2021 study in Building and Environment, filter pressure drop is one of the most overlooked contributors to unnecessary HVAC energy use — especially when filters are overused or under-maintained. [5]


If a building claims progress in sustainability, it’s important to ensure that filtration and airflow practices align with those claims—both from an energy and waste standpoint.


Missed Opportunities for Incentives and Cost Recovery


One of the lesser-known downsides of inefficient airflow is the lost opportunity to qualify for energy retrofit incentives.


Many utility and government programs across North America offer rebates, grants, or low-interest financing for businesses upgrading HVAC systems, controls, and low-pressure filtration. But to be eligible, buildings often need to demonstrate quantifiable improvements in system performance.


For example, Ontario’s Save on Energy Retrofit Program offers up to 50% of project costs for energy-efficiency upgrades, including those related to ventilation, air handling units, and demand control ventilation systems. [6]


Without data on airflow improvement or energy reduction — or without addressing underlying airflow inefficiencies — buildings may fail to qualify, leaving funding on the table.


Practical Steps to Address Airflow Challenges


The good news is that improving airflow doesn’t require a major capital project. Many impactful changes can be made within existing operations and maintenance cycles.


Here’s where most facilities can start:

  • Conduct a static pressure and airflow assessment to identify bottlenecks

  • Replace high-pressure filters with low-pressure, high-efficiency alternatives

  • Balance and tune your HVAC system, especially if zones have changed due to new usage patterns

  • Install real-time IAQ monitors to detect issues as they emerge, not after complaints arise

  • Track filter changeouts and energy use to capture data for future incentive applications


These strategies are already being implemented in facilities across North America — and in most cases, they deliver measurable improvements in energy efficiency, equipment reliability, and occupant satisfaction.



Airflow may not be the most visible part of your building, but it’s one of the most influential. When ignored, it quietly drives up energy costs, reduces system lifespan, and compromises air quality.


For facility managers and business owners focused on performance, sustainability, and operational clarity, airflow should be on the radar — not just as a maintenance metric but as a lever for long-term efficiency and resilience.


Addressing airflow challenges is a straightforward, high-ROI step that supports healthier, more cost-effective, and future-ready buildings.

Carbon Neutral vs Net Zero – What’s the Difference?

  • Writer: Jennifer Crowley
    Jennifer Crowley
  • Jul 28, 2023
  • 4 min read

Updated: Jul 9, 2024

Wodden cube cloks with various sustainability imaged stamped in green on the face of each, stacked into a pyramid
Carbon neutrality achieves a balance between carbon emissions and carbon offsets, while net zero aims to completely eliminate carbon emissions by generating renewable energy on-site.

Buildings play a critical role in our daily lives, providing us with shelter, workspaces, and places to gather. However, they also significantly impact the environment, accounting for a staggering 40% of global energy consumption and 33% of greenhouse gas emissions.


With the impacts of climate change becoming increasingly severe, it’s more important than ever to transition to green energy sources and green building practices. This is where the concepts of carbon neutrality vs net zero emissions come in. By achieving these goals, we can significantly reduce the carbon footprint of our buildings, contributing to a more sustainable future for all.


In this blog, we will dive deep into the world of carbon neutrality and net zero emissions, exploring the benefits, strategies, and challenges of achieving these goals in buildings. Join us on this journey as we discover how efficient HVAC systems can play a critical role in achieving carbon neutrality and net zero emissions in buildings.


Carbon Neutral Buildings

Illustrated chart showasing the balance of energy usage in a carbon neutral building vs typical building energy usage patterns
Carbon neutrality involves reducing energy consumption through energy efficiency measures.

A carbon-neutral building is one that has achieved net zero carbon emissions by balancing the amount of carbon emissions it produces with the amount of carbon it offsets or sequesters.


Achieving carbon neutrality typically involves reducing energy consumption through energy efficiency measures and using renewable energy sources to power the building.


Benefits of Carbon Neutral Buildings:

  1. Reduced carbon emissions and environmental impact

  2. Lower energy costs

  3. Improved indoor air quality and occupant comfort

  4. Enhanced building value and reputation


Net Zero Buildings

A net zero building is one that produces as much renewable energy on-site as it consumes over the course of a year. This means that the building produces zero net carbon emissions from energy consumption.


Benefits of Net Zero Buildings:

  1. Completely eliminates carbon emissions from energy consumption

  2. Lower energy costs

  3. Improved indoor air quality and occupant comfort

  4. Enhanced building value and reputation


Carbon Neutral vs. Net Zero: What is the Difference?

Carbon neutrality and net zero are two important concepts in the context of reducing carbon emissions and mitigating climate change, especially in the building sector. But what is the main difference between the two terms?

While both carbon-neutral and net-zero buildings aim to reduce carbon emissions and promote sustainable energy practices, the main difference lies in the approach.


Carbon neutrality achieves a balance between carbon emissions and carbon offsets, while net zero aims to completely eliminate carbon emissions by generating renewable energy on-site.


Efficient HVAC Systems

Heating, ventilation, and air conditioning (HVAC) systems play a critical role in maintaining comfortable indoor environments in buildings. However, HVAC systems are also one of the most significant contributors to energy consumption and carbon emissions in buildings.


Building owners and managers can implement various energy efficiency measures to reduce energy consumption and carbon emissions from HVAC systems. These measures can include the following:

1. Upgrading to more efficient equipment

Replacing outdated or inefficient HVAC equipment with newer, more efficient models can significantly reduce energy consumption and carbon emissions. For example, upgrading to a high-efficiency air conditioner or heat pump can reduce energy consumption by up to 75% compared to older models.


2. Implementing building automation systems (BAS)

BAS can help optimize HVAC system performance by automatically adjusting temperature settings based on occupancy and outdoor weather conditions. BAS can also monitor energy consumption and provide data to help building owners and managers identify opportunities for further energy savings.


3. Improving building envelope

Improving the building envelope by adding insulation, sealing air leaks, and upgrading windows can help reduce the workload on HVAC systems and improve energy efficiency.


4. Conducting regular maintenance

Regular maintenance, such as cleaning and tuning HVAC equipment, can help ensure systems operate at peak efficiency.


5. Using renewable energy sources

Integrating renewable energy sources, such as solar panels or geothermal systems, can help offset energy consumption from HVAC systems.


By implementing efficient HVAC systems, building owners and managers can significantly reduce energy consumption and carbon emissions from buildings and help contribute to achieving net zero emissions.


Achieving Net Zero Emissions in Buildings

As buildings are responsible for a significant portion of global carbon emissions, transitioning to green energy sources and sustainable building practices is crucial in mitigating the impacts of climate change.


One of the key goals in this regard is achieving net zero emissions, where a building produces as much renewable energy on-site as it consumes over the course of a year. This requires a combination of energy efficiency measures, green energy sources, energy storage systems, ongoing monitoring, and continuous improvement. Now, let’s explore the various steps involved in achieving net zero emissions in buildings.

  1. Implementing Energy Efficiency Measures: Many energy efficiency measures can be implemented in buildings, including lighting upgrades, insulation improvements, and building envelope upgrades. For HVAC systems specifically, there are several measures that can be taken to improve efficiency, such as upgrading to high-efficiency equipment, implementing building automation systems, and conducting regular maintenance and tuning of existing systems.

  2. Integrating Green Energy Sources: To achieve net zero emissions, buildings must generate as much energy as they consume. This can be achieved by integrating green energy sources such as solar panels, geothermal systems, or wind turbines. These systems can be sized and designed to meet the energy needs of the building, and any excess energy can be sold back to the grid.

  3. Utilizing Energy Storage Systems: Energy storage systems can help optimize the use of green energy sources in buildings. By storing excess energy generated by green energy systems, facilities can use this energy during high-demand or low-green energy production periods. This can help reduce the reliance on grid energy and further reduce carbon emissions.

  4. Monitoring and Continuous Improvement: Achieving net zero emissions is not a one-time event but an ongoing continuous improvement process. Monitoring energy usage and carbon emissions on an ongoing basis can help identify areas for improvement and ensure that the building remains on track toward achieving net zero emissions.

Explore expert insights, stay up to date with industry events, and gain a deeper understanding of the cutting-edge developments that are revolutionizing the indoor air quality landscape within Blade Air's comprehensive Insights Hub.

You can also subscribe to our monthly newsletter below for exclusive early access to Blade's Insights content, uncovering tomorrow's air quality advancements before they hit our Hub.

Insights Hub

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

Lorem ipsum dolor sit amet, consec tetur adipiscing elit. Sit quis auctor 

Lorem ipsum dolor sit amet cotetur 

bottom of page